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For the analysis of the angular dependence of electron paramagnetic resonance (EPR) spectra of low-sym-
metry centres with S = 1/2 in three independent planes, it is well-established—but often overlooked—that
an ambiguity may arise in the best-fit g

$
tensor result. We investigate here whether a corresponding

ambiguity also arises when determining the hyperfine coupling (HFC) A
$

tensor for nuclei with I = 1/2
from angular dependent electron nuclear double resonance (ENDOR) measurements. It is shown via a
perturbation treatment that for each set of MS ENDOR branches two best-fit A

$
tensors can be derived,

but in general only one unique solution simultaneously fits both. The ambiguity thus only arises when
experimental data of only one MS multiplet are used in analysis or in certain limiting cases. It is important
to realise that the ambiguity occurs in the ENDOR frequencies and therefore the other best-fit result for

an ENDOR determined A
$

tensor depends on various details of the ENDOR experiment: the MS state of the
fitted transitions, the microwave frequency (or static magnetic field) in the ENDOR measurements and
the rotation planes in which data have been collected. The results are of particular importance in the
identification of radicals based on comparison of theoretical predictions of HFCs with published literature

data. A procedure for obtaining the other best-fit result for an ENDOR determined A
$

tensor is outlined.
� 2008 Elsevier Inc. All rights reserved.
* * *
1. Introduction

Determining the principal values and directions of the g
$

tensor
from the angular dependence of spectra is one of the central prob-
lems of single crystal electron paramagnetic resonance (EPR) spec-
troscopy. Already in 1959, Schonland [1] pointed out an ambiguity
arising when determining the g

$
tensor in the spin Hamiltonian

bHS ¼ lB
~B � g

$
� b~S ð1Þ

for low-symmetry paramagnetic centres with effective spin S = 1/2
in crystals with orthorhombic and monoclinic symmetry (although
the problem is not restricted to these classes of crystal symmetry).
For such crystals, g

$
, which we assume to be symmetric [2] and rep-

resented in an orthonormal reference frame fixed to the crystal, is
commonly determined by analysing the angular dependence of the
EPR spectrum in the three crystallographic planes {ab}, {bc} and
{ca}. For monoclinic crystals with hbi as twofold rotation axis or
{ac} as mirror plane, hai and hci, and hence also {ab} and {bc} are
not perpendicular to one another. It is sometimes more convenient
ll rights reserved.
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to perform experiments in the {a b} and/or {bc } (ha i perpendicular
to hbi and hci, hc*i perpendicular to hai and hbi) planes, instead of in
{ab} and {bc}, respectively. Schonland demonstrated that from data
analysis in three planes of this kind two distinct best-fit solutions
can be found, differing both in principal values and eigenvectors. In
this paper we will refer to these two solutions as Schonland conju-
gate tensors. Only one of them corresponds to the g

$
tensor of the

paramagnetic defect under study, the other is a fitting result without
physical meaning. Outside of these three planes, the EPR positions
calculated for the two solutions may differ considerably and a
straightforward solution to the problem is to complete the experi-
ments by measurements in a fourth, skewed plane. Recording the
powder EPR spectrum can also lift the ambiguity, because the princi-
pal g values—but in general not the directions—can be directly deter-
mined from it. In addition, Morton and Preston [2] described a
procedure to avoid this ambiguity in single crystal EPR by choice of
the rotation planes using a two-circle goniometer.

Later papers on g
$

tensor analysis and EPR textbooks (see e.g.
[3,4]) have extended the work of Schonland and further docu-
mented possible ambiguities in fitting results. Nonetheless, in
experimental EPR literature, this problem is often not recognised.
Yet, it may have serious implications when principal values and
directions of the wrong g

$
tensor would be interpreted theoretically

to infer the molecular structure of the paramagnetic defect.
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Fig. 1. Angular dependence of EPR field positions normalised to 1 GHz microwave
frequency (in units mT/GHz) in three perpendicular rotation planes {ab}, {bc*} and
{c*a}. Symbols: Calculated for a non-symmetric paramagnetic centre with S = 1/2 in
a crystal with monoclinic symmetry, exhibiting the g

$
tensor 1 in Table 1 for one of

the symmetry-related centres (filled circles) and tensor 6 for the other (open
circles). Note that in the {c*a} plane the resonance fields for the two symmetry-
related centres coincide. Full lines: Calculated for g

$
tensors 1–8 in Table 1, labels

refer to the tensor number in Table 1. The simulations illustrate that changing the
sign of the Mij element corresponds to changing the rotation sense in the ij plane
(i, j = 1,2,3, see text).
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In a similar way as for g
$

, one may want to determine the hyper-
fine coupling (HFC) A

$
tensor—which we also assume to be symmet-

rical—for a nucleus with I = 1/2 in the spin Hamiltonian (S = 1/2)

bHS ¼ lB
~B � g

$
� b~S þ b~S � A$ �b~I � gNlN

~B � b~I ð2Þ

from the angular dependence of electron nuclear double resonance
(ENDOR) spectra. Hence, one may wonder if for a corresponding set
of experimental data an analogous Schonland-type ambiguity in the
best-fit solution exists. This problem has, to the best of our knowl-
edge, neither been treated yet from a theoretical nor from a practi-
cal viewpoint in the literature, although it has been recognised that
in the analysis of EPR spectra, treating the HF interaction as a per-
turbation to first order, the ambiguity does arise [3–5]. Our interest
in this matter, and particularly in the ENDOR analysis, arises from
our study of the structure of radiation-induced radicals in single
crystals of mono- and disaccharides [6–9] and other bio-organic
molecules [10–13]. In such crystals, each radical formed is charac-
terised by a set of proton (1H) HFC tensors, whose principal values
and directions are determined from angular dependent ENDOR
experiments, and which are assigned to this particular radical based
on ENDOR-induced EPR measurements. From a set of semi-empiri-
cal rules and equations [14] information on the chemical identity of
the radical can be inferred from the size of the principal HFC values,
the tensor anisotropy and principal directions. This is, however, of-
ten still insufficient for a complete identification of the radical
structure. In recent years, ‘‘first principles” calculations of A

$
tensors

based on density functional theory (DFT) have become increasingly
fast and reliable. In our research of these systems, the comparison
between calculated and experimental principal HFC values and
eigenvectors for proposed radical structures has become a crucial
step in the radical model assignment.

Both semi-empirical theoretical interpretation and identifica-
tion based on comparison with computational results rely strongly
on an accurate determination of experimental tensors. From this
viewpoint it is important to know whether or not a Schonland-type
ambiguity exists, because only the physically relevant tensor pro-
vides information on the radical model and can be reproduced in
calculations, not its Schonland conjugate. In this paper, we explore
this question.

Throughout this paper, we choose ð~ea;~eb;~ecÞ as the reference
frame for representation of tensors for orthorhombic crystals and
ð~ea;~eb;~ec� Þ for monoclinic crystals. Where this choice makes a dif-
ference, the results in a ð~ea� ;~eb;~ecÞ reference frame are also men-
tioned. The simulations shown in Section 3 are obtained by
diagonalisation of the spin Hamiltonians (1) and (2) using the
EasySpin routines [15] in Matlab. These simulations demonstrate
that for HFC tensors of practical interest in the study of radiation
defects in bio-organic molecules like saccharides, the use of first
order perturbation theory in the formulae derived for calculating
Schonland conjugate tensors is sufficiently accurate.

2. Principle of Schonland ambiguity for the HFC tensor:
perturbation theory approach

Schonland [1] demonstrated that in any rotation plane the
angular dependence of the EPR resonance field
B0 ¼ hmMW=glB ð~B ¼ B0

~lÞ, on the rotation angle h follows

g2 ¼~l � g
$
� g
$
�~lT ¼ aþ b cos 2hþ c sin 2h ð3Þ

a, b and c (being expressed also by the elements of the squared g
$

tensor) can directly be calculated from the maximum and minimum
g value encountered in this plane, and the angle h at which the max-
imum g value occurs [1,3]. Ignoring for the moment the possible
presence of symmetry-related centres (site splitting), whose g
$

ten-
sors are related to those of the ‘‘original” centre by the symmetry
operations of the crystal’s point group [4], the occurrence of two
best-fit solutions springs from an ambiguity in the positive rotation
sense in the planes, thus in the sign of h or, alternatively, in the sign
of c. Indeed from Eq. (3) it follows that g2(a,b,c,�h) = g2(a,b,�c,h).
Rotation senses may, however, not be clear from EPR experiments
alone. When analysing data in three rotation planes, in two of them
the sign of c may be chosen without important consequences, but
this fixes the choice in the third plane. When the measurements
are performed on three different crystals, it is however not a priori
clear which sign has to be chosen. A further complication occurs if,
due to site splitting in at least two of the planes, two branches occur
in the angular dependence. Then it cannot be decided which
branches should be fit together (see further in Section 3.1 and
Fig. 1). The two best-fit solutions thus follow from the two sign
choices for c in the third rotation plane.

From these considerations, it is clear that an ambiguity may
arise for the A

$
tensor if the ENDOR resonance frequencies in an

arbitrary plane show an angular dependence similar to Eq. (3). Un-
der the assumption that the HF splitting is small with respect to
the resonance field (high-field approximation), the eigenvalues of
the spin Hamiltonian (2) are calculated as (see e.g. [16–18])

EðMS;MIÞ ¼ lBgB0MS þ KðMSÞMI

K2ðMSÞ ¼~l � K
$
ðMSÞ � K

$
ðMSÞ

� �T

�~lT

K
$
ðMSÞ ¼ g

$
� A
$

g MS � gNlNB01
$

3�3

ð4Þ

and two ENDOR transitions occur at jK(±1/2)j. Formally, K
$
�K
$

T takes
over the role of g

$
� g
$

in the left hand side of Eq. (3), but in general
the angular dependence is more complicated, as also g exhibits
angular dependence. However, in the data analysis for radicals in
organic solids, the (often not analysed) g

$
tensor is nearly isotropic

and all ENDOR measurements are performed at approximately the
same resonance field B0, so that
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K
$
ðMSÞ ¼ K

$
ðMSÞ

� �T

¼ MS A
$
�gNlNB01

$
3�3 ð5Þ

is a very good approximation. The angular dependence of the reso-
nance frequencies within each MS multiplet, jK(±1/2)j, then follows
(3)

K2ðMSÞ ¼~l � K
$
ðMSÞ � K

$
ðMSÞ �~lT ¼ aþ b cos 2hþ c sin 2h ð6Þ

Hence, as for the g
$

tensor, for each K
$
ðMSÞ tensor, two best-fit solu-

tions can be derived from angular dependences in three planes. Via
Eq. (5) an ambiguity in K

$
ðMSÞ immediately leads to an ambiguity in

A
$

as well. However, in order to fit the resonance frequencies in both
MS multiplets, the A

$
tensors calculated from the best-fit K

$
ð1=2Þ and

K
$
ð�1=2Þ solutions should coincide, and we will illustrate in Section

3 that in general this is only the case for one of the solutions. Hence,
in principle a Schonland ambiguity does not occur when determin-
ing hyperfine interactions from the angular dependence of ENDOR
spectra. In practice, however, very often the nuclear resonances in
only one of the multiplets can be used for analysis, and the problem
of finding two best-fit A

$
solutions to the data reappears.

In addition, there are limiting cases where the Schonland conju-
gate A

$
tensors calculated for the two MS multiplets are nearly iden-

tical. When the HF interaction is small compared to twice the
nuclear Zeeman energy at all orientations (requiring a small isotro-
pic value and a sufficiently small anisotropy), by neglecting terms
quadratic in the HFC tensor Eq. (4) yields that the ENDOR frequen-
cies are found at

jKðMSÞj � jAMS � gNlNB0j

A ¼~l � A
$
�~lT

ð7Þ

and A
$

takes over the role of K
$
�K
$

in Eq. (6). This limiting case often
occurs in practice, e.g. for c-protons, especially when experiments
are carried out at microwave frequencies higher than X-band
(10 GHz).

In the opposite case of large HFCs, neglect of the term quadratic
in the nuclear Zeeman energy in (4) leads to

jKðMSÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l � A
$
� A
$
�~lT

q
MS � gNlNB0

~l � A
$
�~lTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~l � A
$
� A
$
�~lT

q
�������

������� ð8Þ

If the anisotropy in A
$

is small, it may be verified that for all mag-

netic field orientations~l � A
$
�~lT �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l � A
$
� A
$
�~lT

q
, and a Schonland ambi-

guity arises in A
$
� A
$

. Such HF tensors are typically observed for b-
protons and the requirements for neglecting the high-order terms
in the nuclear Zeeman frequency are best fulfilled at relatively
low microwave frequencies. An ambiguity in A

$
� A
$

is also encoun-
tered when analysing the angular dependence of the HF splitting
in the EPR spectrum for large A

$
, when the nuclear Zeeman interac-

tion is completely neglected [4,5].
It is worth noting that in these two limiting cases Schonland

conjugation becomes independent of B0 or the microwave fre-
quency (see also Section 3.1.3). In view of certain analogies in
the calculation procedures for the Schonland conjugate of a g

$
ten-

sor (see Section 3.1.1), one might be tempted to believe that the
Schonland conjugate of an A

$
tensor can in general be found in this

way. This is, however, contradicted by Eqs. (5) and (6). In Section
3.1.2 we illustrate the consequences of making use of the formulae
valid in limiting cases for a system where HF and nuclear Zeeman
interactions have the same order of magnitude.

The assumptions under which Eq. (5) is derived appear to re-
strict its scope, although in practice for a lot of systems it may
safely be applied. It has been stated that for moderate g

$
anisotropy

(total anisotropy of the order of 10% of the average g value), as
encountered for many free radicals and simple transition metal
complexes, neglecting it introduces errors in obtained A
$

tensors
in the order of experimental accuracy [4]. The simulations shown
in the next section, based on full diagonalisation of the spin Ham-
iltonian (2), justify a posteriori that the order of perturbation used
here is appropriate for HFCs up to �100 MHz at moderate
(�10 GHz, X-band) and higher microwave frequencies. This is in
part a result of the fact that the higher order corrections to the EN-
DOR frequencies for Schonland conjugate tensors are very similar.
3. Practice: finding Schonland conjugate forms and selecting
the right solution

In this section, we illustrate the consequences of Schonland
ambiguity for the A

$
tensor in the analysis of angular dependent EN-

DOR spectra for various choices of the three rotation planes.
Throughout this section experimental alternatives to performing
measurements in a fourth independent plane are offered to select
the correct form for the A

$
tensor out of the two Schonland conjugate

possibilities. The first subsection also comprises a recapitulation of
the (simpler, but more essential) problem for the g

$
tensor for readers

less familiar with the problem discussed by Schonland [1].
Another important purpose of this section is to discuss how the

other best-fit tensor to the ENDOR data can be found for literature
cases where one suspects the wrong Schonland conjugate A

$
tensor

was chosen. It is clear that the ENDOR spectroscopist, having the
experimental data and simulation and fitting tools at hand, can
find the other tensor by fitting, changing the rotation sense in
one of the planes in which spectra have been recorded. We present
here an analytical and fast way of calculating the Schonland conju-
gate tensor, based on the first order perturbation expressions in Eq.
(4). It is important to bear in mind that for an ENDOR experiment,
the origin of the ambiguity is in the ENDOR frequencies and hence
is directly described by the K

$
tensor (Eqs. (5) and (6)) and only

indirectly by the A
$

tensor. On the other hand, it is the A
$

tensor that
bears information on the radical structure and that we are ulti-
mately interested in, not K

$
.

As will be shown, the calculations imply a sign-indetermination
in the principal values of K

$
, which introduces further ambiguity in

the analysis. As this type of ambiguity also appears when deter-
mining other electron magnetic resonance properties (e.g. g

$
and/

or A
$

from EPR spectra), we choose to follow a practical approach,
which works quite well for the examples given. Moreover, it has
recently been shown that pulsed ENDOR at high field [19] and/or
for special pulse sequences [20,21] allows determining absolute
signs of HFCs. Relative signs of different couplings, on the other
hand, may be obtained from electron nuclear nuclear triple reso-
nance experiments [4].

We will restrict ourselves to three cases often encountered in
practice. The first is that of data points collected in three orthogonal
planes, more specifically the {ab}, {bc} and {ca} planes for ortho-
rhombic and {ab}, {bc*} and {c*a} planes for monoclinic crystals. In
the second subsection, extension to two cases relevant for mono-
clinic crystals are discussed: analysis of data in the {ab}, {bc} and
{c*a} planes, and in the {a*b}, {bc*} and {c*a} planes. For all these cases,
due to the occurrence of site splitting, the ambiguity cannot be lifted
by explicit knowledge of the rotation sense in the planes. Finally, in
Section 3.3, we show that when lifting the degeneracy of the transi-
tions, the Schonland ambiguity in principle is also lifted.

Throughout this section, we denote the tensor in which a
Schonland-type ambiguity may arise ðg

$
� g
$
;K
$
ðMSÞ � K

$
ðMSÞ, and in

limiting cases A
$

or A
$
� A
$
Þ as M

$
and its elements as Mij (i, j = 1,2,3,

with 1 corresponding to hai, 2 to hbi and 3 to hc(*)i). The elements
of a Schonland conjugate tensor will be called eMij and those of a
tensor related to M

$
by crystallographic point-group symmetry

operations Mij.
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3.1. Analysis of data in three orthogonal planes: {ab}, {bc(*)}, {c(*)a}

As explained by Schonland [1] and in Section 2, the occurrence
of two best-fit solutions is the result of an ambiguity in the sign of
the c parameters of Eqs. (3) or (6), related to the sense of rotation
in the three planes. Labelling the a, b and c parameters with 3 for
rotation in the {ab} plane, with 1 for {bc(*)} and with 2 for {c(*)a},
one finds (see Ref. [1])

M11 ¼ a3 þ b3 M22 ¼ a3 � b3 M12 ¼ c3

M22 ¼ a1 þ b1 M33 ¼ a1 � b1 M23 ¼ c1

M33 ¼ a2 þ b2 M11 ¼ a2 � b2 M13 ¼ c2

ð9Þ

For this particular choice of planes, i.e. the principal planes of the
reference frame in which the g

$
and/or A

$
tensors are represented,

the ambiguity thus lies in the sign of the off-diagonal elements of
the M

$
tensor.

3.1.1. Illustration for the g tensor
We briefly illustrate the problem for the g

$
tensor. In Table 1, the

principal g values and directions for the eight possible sign combi-
nations of the off-diagonal elements of M

$
¼ g
$
� g
$

are given. g
$

is cal-
culated from M

$
as its positive symmetrical square root, i.e. the

tensor with the same principal directions and whose principal val-
ues are the positive square roots of those of M

$
. It is well known that

the sign of the principal g values cannot be determined in regular
EPR experiments making use of linearly polarised microwaves, so
in principle both positive and negative square roots should be con-
sidered. However, negative g values are not so common and prac-
Table 1
Principal values and directions of the positive symmetrical square roots of the g

$
� g
$

tensors obtained by considering the eight possible sign combinations of the off-
diagonal elements for g

$
� g
$

calculated from the tensor in row 1

Principal value Direction cosines with respect to

a b c*

1 Original M 1.9000 0.1632 0.0594 0.9848
2.0000 0.7589 �0.6454 �0.0868
2.1000 0.6304 0.7615 �0.1504

2 eM12 ¼ �M12 1.8957 0.2338 0.1740 0.9566
2.0086 0.7399 0.6064 �0.2912
2.0957 �0.6307 0.7759 0.0130

3 eM13 ¼ �M13 1.8957 �0.2338 0.1740 0.9566
2.0086 �0.7399 0.6064 �0.2912
2.0957 �0.6307 �0.7759 �0.0130

4 eM23 ¼ �M23 1.8957 0.2338 �0.1740 0.9566
2.0086 �0.7399 0.6064 0.2912
2.0957 �0.6307 �0.7759 0.0130

5 eM12 ¼ �M12 1.9000 �0.1632 0.0594 0.9848eM13 ¼ �M13 2.0000 �0.7589 �0.6454 �0.0868
2.1000 0.6304 �0.7615 0.1504

6 eM12 ¼ �M12 1.9000 0.1632 �0.0594 0.9848eM23 ¼ �M23 2.0000 �0.7589 �0.6454 0.0868
2.1000 0.6304 �0.7615 �0.1504

7 eM13 ¼ �M13 1.9000 �0.1632 �0.0594 0.9848eM23 ¼ �M23 2.0000 0.7589 �0.6454 0.0868
2.1000 0.6304 0.7615 0.1504

8 eM12 ¼ �M12 1.8957 �0.2338 �0.1740 0.9566eM13 ¼ �M13 2.0086 0.7399 0.6064 0.2912eM23 ¼ �M23 2.0957 �0.6307 0.7759 �0.0130

Tensors 1, 5, 6 and 7, form a set with identical principal values, obtained by
changing the sign of an even number of off-diagonal elements. The second set,
containing 2, 3, 4 and 8, is obtained by changing the sign of an odd number of off-
diagonal elements. The tensors within each set are transformed into one another by
a symmetry operation of the orthorhombic group: sign changes in the elements Mij

and Mjk are equivalent to a twofold rotation around the hji axis or a mirror operation
through the {ik} plane (i, j,k = a,b,c*).
tically excluded in the context of radicals in organic crystals, where
only small deviations from g = 2 are expected. Hence, in this exam-
ple it makes sense to restrict the choice of signs to positive. In Table
1 one can verify that the eight tensors split up in two sets (1,5,6,7
and 2,3,4,8). Within a set the tensors are transformed into one an-
other by changing the signs of an even number of off-diagonal ele-
ments. These transformations are equivalent to the symmetry
operations of the orthorhombic group (unity operator and twofold
rotations around the x, y and z axes). As a consequence, all four ten-
sors within a set have the same principal values. Changing the sign
of an odd number of off-diagonal elements in M

$
transforms a g

$

tensor of one set into one of the other. No symmetry operation
can be found which transforms two tensors belonging to different
sets into one another, which is immediately clear, because they
have different principal values. The fact that changing an odd num-
ber of off-diagonal elements in sign leads to a tensor with different
principal values can be readily understood considering that the
secular equation for finding the principal values of M

$
¼ g
$
� g
$

con-
tains only one term (part of the constant term) sensitive to the
signs of the off-diagonal elements, more specifically M12M13M23.
This further implies that possible ambiguity with respect to the
principal values disappears, if at least one of these off-diagonal ele-
ments is zero (which happens e.g. if the radical has higher
symmetry).

In Fig. 1 the calculated angular dependence for these eight ten-
sors (solid lines) is compared to that expected to be measured for a
non-symmetric paramagnetic centre (i.e. with triclinic or C1 sym-
metry) in a monoclinic crystal with the first tensor in Table 1 as
g
$

, for the first (filled circles) and the sixth tensor for the symmetry
related centre (open circles). Fig. 1 clearly illustrates:

(i) The degeneracy of the resonance fields in the {c*a} plane.
(ii) Changing the sign of the off-diagonal element Mij is equiva-

lent to changing the rotation sense in the {ij} plane.
(iii) Two symmetry operations of the orthorhombic group do not

belong to the monoclinic group. The resonance fields calcu-
lated for g

$
tensors 3, 5, 7 and 8 do not match the angular

dependence in the {c*a} plane. In the following we continue
with the example of a non-symmetric centre in a monoclinic
crystal and will therefore only consider sign changes in the
M12 or M23 elements.

(iv) The two Schonland conjugate solutions (two sets of two ten-
sors, (1,6) and (2,4), related within a set by monoclinic sym-
metry operations) fit the ‘‘experimental” points equally well
and it is thus not possible to decide from these data which g

$

tensor is the correct form and which only fits in these three
planes.

Fig. 1 also illustrates that in this example, where site splitting
occurs, the ambiguity is essential: even if the rotation sense in
the three planes is known, it cannot be decided from experiment
whether the angular dependence of the filled circles in the {ab}
plane should be combined with that of the filled circles in the
{bc*} plane, leading to tensor 1, or with that of the open circles,
leading to the Schonland conjugate tensor 4.

3.1.2. Schonland conjugate of a HFC tensor
We now move on to the ambiguity for the A

$
tensor and focus on

the analysis of 1H couplings by ENDOR spectroscopy. We assume
that an ambiguity in the fitting result may arise because the tran-
sitions within only one of the MS multiplets were fitted. Most often,
these are the transitions occurring at the higher frequencies. For
tensors with positive principal values, and hence a positive trace
ðTrðA

$
Þ ¼ 3AisoÞ, as for b-protons, these are the MS = �1/2 transi-

tions, for a-protons with negative principal values and Aiso, they
are those in the MS = 1/2 multiplet. As gN(1H) > 0, in either case



200 H. Vrielinck et al. / Journal of Magnetic Resonance 195 (2008) 196–205
K
$

high ¼ �signðAisoÞ
A
$

2
� gNlNB01

$
3�3 ð10Þ

Like for g
$

, Schonland conjugate forms of K
$

high, designated eK$high, can
now be found by changing either the 12 or the 23 element of
M
$
¼ K
$

high � K
$

high and taking its symmetrical square root. However,
an important complication arises immediately, because the square
root operation can only be performed when all three principal val-
ues of eK$ � eK$ are positive, which is most often the case, but not in
general. Negative principal values of eK$ � eK$, however, indicate that
a Schonland conjugate tensor eA$ cannot be found in such cases, as
it would have complex principal values. In addition, for each
principal eK$ value both the positive and the negative square root
should in principle be considered. The problem of determining the
signs of the principal values already occurs for K

$
in a first order

analysis of ENDOR data within only one of the MS multiplets, but
inspection of the simulations for all possible sign combinations usu-
ally allows the selection of one solution as most plausible. This gives
rise to one A

$
tensor solution, completely determined except for a

possible overall sign reversal. When for some orientations the EN-
DOR frequencies of the other multiplet are also observed, the ambi-
guity in the relative signs of the A

$
tensor usually vanishes

completely.
Returning to the problem of finding the Schonland conjugate

form of K
$

high, except when at least one of the principal HFC values
has a sign opposite to that of Aiso and its magnitude is larger than

or comparable to 2gNlNB, all principal values of K
$

high are negative

and it is safe to assume that those of eK$high are all negative as well.

From the thus obtained tensor the Schonland conjugate tensor eA$
can be calculated by reversing Eq. (10)

eA$ ¼ �2 eK$high þ gNlNB01
$

3�3

� �
signðAisoÞ ð11Þ

In the second row of Table 2 we show the principal values and
directions of the resulting tensor Schonland conjugate to that given
in the first row, for gNlNB0 = 14.9 MHz (B0 = 350 mT or g = 2 at
9.80 GHz, X-band), by changing the sign of M12, i.e. considering
ambiguity in the sign of c3. As an illustration, the procedure for
Table 2
Starting with an ENDOR determined HFC tensor A

$
in row 1, Schonland conjugate tensors a

where the M tensors are constructed according to the different possibilities outlined in Se

Principal A values (MHz)

1 Original A
$

tensor 22.50
41.25
60.00

M
$

Principal eA values (MHz)

2 K
$

high � K
$

high 29.58
33.16
61.62

3 K
$

low � K
$

low 27.44
43.48
59.86

4 A
$

28.27
32.73
62.75

5 A
$
� A
$

30.66
33.67
61.11

The calculation scheme for obtaining tensor 1 from 2, along with intermediate results, is f
data are analysed in the {ab}, {bc*} and {c*a} rotation planes. Calculations are performed f
gives the deviation in principal directions with the original tensor in the first row.
obtaining the original tensor in row 1 of Table 2 from the Schonland
conjugate form in row 2 is schematically represented in the Appen-
dix. The original tensor is chosen to have considerable anisotropy
and such principal values that for low to moderate microwave fre-
quencies (e.g. X- or Q-band: 34 GHz) the HF and nuclear Zeeman
interaction terms have the same order of magnitude. Moreover,
the shape of tensor 1 is typical of an a-proton (provided that the
signs of all principal values are negative). It is noticeable that the
Schonland conjugate tensor 2 may well be interpreted as arising
from a b-hydroxyl proton [12,13,22]. This illustrates that Schonland
ambiguity can indeed have serious consequences for the radical
model selection.

In the third row of Table 2 the Schonland conjugate tensor cal-
culated from the low frequency ENDOR transitions is shown. It is
obtained by considering a sign ambiguity in the 12 element of

K
$

low � K
$

low, where K
$

low is calculated by reversing the sign of the first
term on the right hand side of Eq. (10). The problem of determining

the signs of the principal eK$ values is somewhat more difficult here,

as K
$

low has positive as well as negative principal values. In princi-
ple, all sign combinations should be tested. We have chosen here to
present only the result of which the determinant is closest to that
of the original tensor, because this property directly appears in the
formulae for the second order corrections to the ENDOR resonance
frequencies (see e.g. [4]). We recognise, though, that next to the
Schonland ambiguity, sign ambiguities may also be very pertinent,

especially if K
$

low=high has principal values close to zero. Finally, rows
4 and 5 show the Schonland conjugate forms in the limiting cases

with M
$
¼ A
$

and M
$
¼ A
$
� A
$

(see Section 2). In Fig. 2 the calculated
ENDOR angular dependences for all these tensors (lines) are com-
pared to those expected to be measured (symbols) for the two
symmetry-related centres of a non-symmetric centre in a mono-
clinic crystal, one of which has a HF interaction characterised by
tensor 1 in Table 2.

From Table 2 we conclude that the various conjugate tensors
differ strongly both in principal values and directions, not only
from the original tensor but also considerably among each other.
This presents a serious problem if one wants to validate structural
models based on comparison with results from ‘‘first principles”
re obtained by considering the ambiguity in the sign of the off-diagonal element M12

ctions 2 and 3.1.2 (Eqs. (5), (7) and (8))

Direction cosines with respect to

hai hbi hc*i

�0.6861 �0.5967 0.4162
�0.6287 0.7742 0.0734
�0.3660 �0.2113 �0.9063

Direction cosines with respect to Dh (�)

hai hbi hc*i

�0.8887 0.3478 0.2988 58.22
0.2014 0.8815 �0.4271 58.37
�0.4119 �0.3194 �0.8534 7.39

�0.6621 �0.6397 0.3905 3.19
�0.6587 0.7452 0.1039 2.96
�0.3574 �0.1884 �0.9147 1.48

�0.8516 0.4665 0.2391 66.08
0.3061 0.8128 �0.4956 66.39
�0.4256 �0.3488 �0.8350 9.52

�0.9147 0.1669 0.3680 47.06
0.0344 0.9396 �0.3406 47.10
�0.4027 �0.2989 �0.8652 5.93

ound in Appendix A. All results are obtained assuming that the resonance frequency
or gNlNB0 = 14.902 MHz, i.e. B0 = 350 mT, or g = 2 at mMW = 9.8 GHz. The last column



Fig. 2. Angular dependence of ENDOR frequency positions in {ab}, {bc*} and {c*a} planes, calculated at a microwave frequency of 9.8 GHz (B0 = 350 mT for g = 2), for a non-
symmetric centre with S = 1/2 and isotropic g

$
, interacting with a 1H nucleus in a crystal with monoclinic symmetry. The principal values and directions of the HFC tensors

used in the simulations are given in Table 2. Symbols: For a nucleus whose interaction is parameterized by the tensor in the first row of Table 2 for one of the sites (filled
circles) and by its monoclinic symmetry-related tensor for the other (open circles). Full lines: For the two symmetry-related sites of an interaction characterised by the tensor
in the second (black), third (red), fourth (blue), and fifth (green) tensor in Table 2.

Fig. 3. Angular dependence in {ab}, {bc*} and {c*a} planes of the high frequency
ENDOR branches (MS = �1/2) for a non-symmetric centre with S = 1/2 interacting
with a 1H nucleus in a monoclinic crystal, calculated at a microwave frequency o
34 GHz (1214.6 mT for g = 2). Symbols: For one of the symmetry-related sites, the
interaction is parameterized by the tensor 1 in Table 2 (filled circles) and for the
other by its monoclinic symmetry-related tensor (open circles). Full lines: Simula-
tions for the two symmetry-related centres, the interaction of one of which is
parameterized by tensor 2 in Table 2. The discrepancy with the angular dependence
represented by symbols demonstrates the importance of the microwave frequency
in the calculation of the Schonland conjugate form of an A

$
tensor.
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DFT calculations. Not only should one realise that another best-fit
tensor may exist, but one should also carefully consider how to cal-
culate it, based on the details of the performed experiments. Fig. 2
clearly demonstrates that, in this general case with nuclear Zee-
man and strongly anisotropic HF interactions of the same order
of magnitude, an ambiguity can only arise if one considers only
one of the MS multiplets in the fitting. Furthermore, the conjugate
tensors calculated with tensors 4 and 5, this is in the small and
large HFC limits, respectively, do not render satisfactory agreement
with the data points calculated for the original tensor. These obser-
vations are in agreement with our theoretical analysis in Section 2
and demonstrate that a Schonland ambiguity for HFC tensors in
principle does not exist. Still, in cases of measurements of the tran-
sitions within only one of the MS states in the three planes here
considered, it is impossible to decide between two best-fit solu-
tions (1 and 2 or 1 and 3 in Table 2). Thus, if for an A

$
tensor given

in literature one wants to calculate a Schonland conjugate alterna-
tive, in addition to the principal values and directions of the tensor
itself, one also needs to know at least if the high or low frequency
branches have been considered for analysis. In the following sub-
sections, it will become clear that other details of the experiment
are also important for calculating Schonland conjugate tensors.

Analysis procedures to directly obtain the ij components of A
$

by
fitting the angular dependence of the difference of the squares of
the ENDOR frequencies in the two MS multiplets

(jK2ð�1=2Þ � K2ð1=2Þj ¼ jgNlNB0
~l � A
$
�~lj, see [4]) may give the

impression that an ambiguity with M
$
¼ A
$

may still exist when
both ENDOR transitions are considered in the analysis. Fig. 2 (blue
lines) shows that in general this ambiguity is lifted by simulation
of the actual transition frequencies.

3.1.3. Frequency dependence
Eqs. (10) and (11) demonstrate that, apart from the multiplet

fitted, the Schonland conjugate A
$

tensor also depends on B0, and
thus on the microwave frequency at which experiments were
performed. To illustrate this, Fig. 3 shows a comparison between
calculated ENDOR frequencies for tensors 1 (open and filled circles)
and 2 (fully drawn lines) in Table 2 at 34 GHz, focussing on the
high frequency branches (MS = �1/2). The two patterns do not per-
fectly match. This indicates that for sufficiently large and aniso-
tropic HF interactions, complementing the measurements in the
f
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three planes with experiments at another microwave frequency
may be considered as an alternative to measuring in a fourth plane
for selecting the right best-fit solution, provided that the crystal
can be accurately aligned. In general, it appears to be a less dis-
criminating method.

Table 3 illustrates that in the limiting case of relatively small
HFCs, i.e. at high microwave frequency, a real Schonland ambiguity

arises. The Schonland conjugate A
$

tensors of tensor 1 in Table 2 are
calculated from the low and high frequency multiplets at several
microwave frequencies. At very high frequency the Schonland con-
jugate tensors for the high and low frequency branches practically
coincide and are nearly equal to tensor 4 in Table 2. At low fre-
quency, we see that in spite of the strong anisotropy, the tensors
are also quite similar and, as expected, close to tensor 5 in Table
2. At intermediate frequencies the differences, both in principal
values and directions (Dh) are quite considerable. Although not
all individual parameters show monotonous relations on the
microwave frequency, overall the deviation between the two dif-
ferent Schonland conjugate forms seems to go through a maximum
where the HF and nuclear Zeeman interactions are closest in mag-
nitude. These findings are indeed expected from Eqs. (10) and (11)

and their analogues for K
$

low.

3.2. Experimental data in non-orthogonal planes for monoclinic
crystals

In experiments on monoclinic crystals, it may be more conve-
nient to record angular dependences in the crystallographic {ab},
{bc} and {ca} planes, or to rotate the crystals around their hai
({bc*} plane), hbi ({c*a} plane) and hci axes ({a*b} plane). Because
rotation in a fourth off-axis (tilted) plane allows deciding between
Schonland conjugate tensors, changing the rotation planes should
also have an influence on the relation between the best-fit tensors.

We assume that the angle between the positive hci and hai axes
is b = 90� + d. Hence, in the~ea;~eb;~ec� frame, the unity vectors along
the positive hci and ha*i axes have the Cartesian coordinates

~ec ¼ ð� sin d;0; cos dÞ
~ea� ¼ ðcos d; 0; sin dÞ

ð12Þ

The magnetic field orientations for positive rotations over an angle h
in the {bc} and {a*b} planes are then given by
Table 3
Schonland conjugate tensors of the HFC tensor 1 in Table 2, calculated for the high (left) a
considering the ambiguity in the sign of the off-diagonal M12, arising when resonance fre

mMW (GHz) gNlNB0 (MHz) eA (MHz) hai hbi hc

1 1.52 30.48 �0.9121 0.2046
33.57 0.0693 0.9310 �
61.18 �0.4041 �0.3022 �

3 4.56 30.19 �0.9057 0.2591
33.42 0.1197 0.9155 �
61.31 �0.4066 �0.3077 �

9.8 14.9 29.58 �0.8887 0.3478
33.16 0.2014 0.8815 �
61.62 �0.4119 �0.3194 �

34 51.7 28.87 �0.8681 0.4204
32.92 0.2667 0.8435 �
62.11 �0.4187 �0.3342 �

94 142.9 28.53 �0.8584 0.4483
32.81 0.2908 0.8257 �
62.44 �0.4225 �0.3424 �

270 410.5 28.37 �0.8541 0.4599
32.76 0.3006 0.8176 �
62.63 �0.4244 �0.3464 �

The last column gives the deviation in principal directions between the two tensors in t
~lbc ¼ ð� sin h sin d; cos h; sin h cos dÞ
~la�b ¼ ðcos h cos d; sin h; cos h sin dÞ

ð13Þ

For rotation in the three crystallographic planes {ab}, {bc}, {ca}, Eq.
(6) leads to the first and third expression in Eq. (9), but the second
line should be replaced by

M22 ¼ a1 þ b1

M33 cos2 dþM11 sin2 d� 2M13 sin d cos d ¼ a1 � b1

M23 cos d�M12 sin d ¼ c1

ð14Þ

This result was also obtained by Schonland [1] using e = �d. If we
assume ambiguity in the sign of c3 ¼ M12 ¼ � eM12, all other matrix
elements of the two best-fit tensors to the data points are identical,
except for

eM23 ¼ M23 � 2M12 tan d ð15Þ

For rotations around the crystallographic axes in the {a*b}, {bc*} and
{c*a} planes, the second and third line of Eq. (9) should be combined
with

M11 cos2 dþM33 sin2 dþ 2M13 sin d cos d ¼ a3 þ b3

M22 ¼ a3 � b3

M12 cos dþM23 sin d ¼ c3

ð16Þ

If we again assume ambiguity in the sign of c3, all matrix elements
for the two best-fit matrices M

$
are identical, except for

eM12 ¼ �M12 � 2M23 tan d ð17Þ

Knowing the ambiguity in M
$

, calculating the Schonland conjugate

forms for g
$

or A
$

goes along the line set in Section 3.1.
In Fig. 4 we compare the angular dependence in the {a*b}, {bc*}

and {c*a} planes of the ENDOR transitions calculated with A
$

tensor
1 in Table 2 and its monoclinic symmetric equivalent (filled and
open circles) with that for the Schonland conjugated tensors calcu-
lated with Eq. (17) (full lines) and with tensor 2 from Table 2
(dashed lines), which is the Schonland conjugated form for rotation
in the three orthogonal planes. d is taken 13�, making the angle be-
tween hci and hai 103�. As expected, the full lines perfectly match
the dots but the dashed lines do not fit at all in the {a*b} plane. So,
in addition to the MS multiplet and the microwave frequency, one
should also carefully consider the planes in which the experiments
nd low (right) frequency ENDOR transitions at various microwave frequencies (g = 2),
quency data are analysed in the {ab}, {bc*} and {c*a} rotation planes

*i eA (MHz) hai hbi hc*i Dh (�)

0.3553 30.86 �0.9160 0.1191 0.3830 5.16
0.3583 33.81 �0.0097 0.9480 �0.3181 5.17
0.8633 61.03 �0.4010 �0.2951 �0.8673 0.50

0.3354 31.33 �0.9078 �0.0192 0.4190 16.71
0.3840 34.25 �0.1363 0.9582 �0.2515 16.76
0.8603 60.84 �0.3967 �0.2854 �0.8725 1.56

0.2988 27.44 �0.6621 �0.6397 0.3905 61.15
0.4271 43.48 �0.6587 0.7452 0.1039 61.32
0.8534 59.86 �0.3574 �0.1884 �0.9147 8.86

0.2641 27.18 0.8253 �0.5281 �0.2001 7.59
0.4662 32.34 0.3514 0.7576 �0.5501 8.43
0.8444 65.56 0.4421 0.3836 0.8108 3.67

0.2493 27.96 �0.8435 0.4867 0.2272 2.68
0.4833 32.62 0.3223 0.7970 �0.5107 2.90
0.8392 63.23 �0.4297 �0.3576 �0.8292 1.12

0.2429 28.17 �0.8489 0.4733 0.2352 0.93
0.4910 32.70 0.3116 0.8077 �0.5005 1.01
0.8366 62.89 �0.4268 �0.3516 �0.8332 0.38

he row. The tensors at 9.8 GHz are identical to tensors 2 and 3 in Table 2.
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have been carried out when calculating the Schonland conjugate A
$

tensor. Furthermore, it may be easily verified that when ð~ea� ;~eb;~ecÞ

is chosen as reference frame for representation of the g
$

and/or A
$

tensors, expressions identical to (15) and (17) are found, except
for a sign change in the second term on the right hand side.

3.3. Lifting the degeneracy by rotating in tilted planes

As a final point, it will be illustrated that the degeneracy be-
tween the two best-fit solutions is lifted, along with that of the res-
onance fields or frequencies for symmetry-related centres, when
rotating in tilted planes. So far, the role of symmetry-related cen-
tres in deriving the equations has not been explicitly considered,
but the simulations demonstrated that the Schonland conjugate
of a symmetry-related tensor is the symmetry-related of the
Schonland conjugate. This is obvious in Figs. 1, 2 and 4 and can,
for the special case of rotation in three orthogonal planes, be veri-
fied in Table 1. For the case of monoclinic crystals considered in
Section 3.2, one may verify that for the symmetry-related centre,
which has M12 ¼ �M12;M13 ¼ M13 and M23 ¼ �M23, Eqs. (14) and
(16) still lead to (15) and (17). On the other hand, rotating
outside the {c*a} plane for the same monoclinic crystal, e.g. from
(0,sine, cose) to (1,0,0) leads to the expressions

M33 cos2 eþM22 sin2 eþ 2M23 sin e cos e ¼ a2 þ b2

M11 ¼ a2 � b2

M13 cos eþM12 sin e ¼ c2

ð18Þ

to be combined with, e.g. the first and second line of Eq. 9. Again
considering an ambiguity in the sign of c3, the two best-fit solutions
for one site differ in the elements

eM12 ¼ �M12eM13 ¼ M13 þ 2M12 tan e
ð19Þ

The symmetry-related tensor M
$

and its Schonland conjugate fM$
have to be related by the same equations. However, this leads to
Fig. 4. Angular dependence in {a*b}, {bc*} and {c*a} planes of the high frequency
ENDOR branches for a non-symmetric centre with S = 1/2 interacting with a 1H
nucleus in a monoclinic crystal, calculated at a microwave frequency of 9.8 GHz
(350 mT for g = 2). Symbols: For one of the symmetry-related sites, the interaction is
parameterized by the tensor 1 in Table 2 (filled circles) and for the other by its
monoclinic symmetry-related tensor (open circles). Lines: Simulations for the two
symmetry-related centres, the interaction for one of which is parameterized by the
Schonland conjugate tensor calculated using Eq. (17) (full lines). For comparison,
the simulation with the Schonland conjugate tensor in case of rotation in three
orthogonal planes (tensor 2 in Table 2) is also shown (dashed lines).
the conclusion that the Schonland conjugate tensors for the two
symmetry-related centres are not related by symmetry, because

~M13 ¼ M13 þ 2M12 tan e ¼ M13 � 2M12 tan e

– eM13 ¼ eM13 ¼ M13 þ 2M12 tan e ð20Þ

It should further be noted from the first line in Eq. (18), that the
angular dependences of the two symmetry-related centres no long-
er coincide, as a and b should differ, since M23 ¼ �M23. This lifting
of the degeneracy is clearly observable in Fig. 5. Here, we compare
simulated ENDOR angular dependences of the two symmetry-re-
lated sites for protons with a HFC tensor 1 in Table 2 and its Schon-
land conjugate according to Eq. (19). A small tilting angle of e = 2�
already leads to a significant difference in the tilted {c*a} plane:
the symbols and lines coincide for only one of the symmetry-related
centres. One can verify that for monoclinic crystals the ambiguity
generally is also lifted when one of the rotation planes is not
orthogonal to {c*a}. For orthorhombic crystals, a similar lifting of
the degeneracy is found for angular dependences in planes slightly
tilted away from {ab}, {bc} or {ca} in the case of four symmetry-re-
lated centres.

In spite of this apparent advantage of tilted planes, measure-
ments in crystal symmetry planes and directions should still be
preferred, because crystals can be very accurately aligned to such
orientations, just due to actual degeneracy of transitions. Inaccu-
racies in orientation and adjustment of the rotation planes in
the fitting will inevitably lead to higher fitting errors and possibly
also to additional (local) minima in the total error. Moreover, for
systems where a large number of very similar paramagnetic cen-
tres are present with partially overlapping EPR and ENDOR spec-
tra, accurate orientation to the hai, hbi and hc(*)i axes where
angular dependences of the interactions in various planes meet,
is absolutely necessary, and reducing the number of lines by coin-
cidence for symmetry-related centres may considerably facilitate
the analysis.
Fig. 5. Angular dependence in a slightly misaligned {c*a} plane (poles h = 92� and /
= 90�) of ENDOR frequencies calculated for a non-symmetric centre with S = 1/2

interacting with a 1H nucleus. Symbols: With tensor 1 in Table 2 as A
$

for one of the

symmetry-related centres (filled circles) and its monoclinic symmetry-related ðA
$
Þ

for the other (open circles). Lines: With the Schonland conjugate of tensor 1 in Table

2 for one of the symmetry-related centres ðeA$Þ and its monoclinic symmetry-related

for the other ðeA$Þ. The discrepancy between the angular dependences for the second
site (open circles and full lines) demonstrates that for this tilted plane, the
symmetry-related of the Schonland conjugate tensor is not the Schonland conjugate
of the symmetry-related tensor.



Fig. A. Starting from tensor 2 in Table 1, the Schonland conjugate tensor (tensor 1 in Table 2) is calculated under the assumption that high frequency ENDOR branches (Khigh,
Eqs. (10), (11)) are used in the analysis, and for experimental data in {ab}, {bc*} and {c*a} planes. gNlNB0 = 14.902 MHz (B0 = 350 mT, g = 2 at 9.8 GHz). For the low frequency
ENDOR branches (Klow), the first term on the right hand side of Eq. (10) and the complete right hand side of Eq. (11) should be changed in sign, as explained in the text. For
experimental data in the {ab}, {bc} and {ca} planes, Schonland conjugation of M

$
should be performed using Eq. (15), and for the {a*b}, {bc*} and {c*a} planes using Eq. (17).
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4. Conclusions

In this paper, the possibility of obtaining two distinct, not
symmetry-related, best-fit A

$
tensor solutions from angular

dependent ENDOR measurements is explored for I = 1/2 nuclei
interacting with an electronic spin S = 1/2 with (quasi) isotropic

g
$

tensor. This problem is particularly important in theoretical
interpretations and/or when radical identification based on ‘‘first

principles” reproduction of A
$

tensors is envisaged. This is illus-
trated in an example where alternative Schonland conjugate

forms of an A
$

tensor would lead to identification of the interact-
ing nucleus as either a b-hydroxyl or an a-proton. We have con-
fined the discussion to non-symmetric paramagnetic centres in
orthorhombic and monoclinic crystals, for which Schonland re-

ported a possible ambiguity for the g
$

tensor when restricting
the measurements to three symmetry planes (see Section 3). If
in the ENDOR measurements the nuclear transitions within the
two MS multiplets both may be observed, for each of them

two best-fit A
$

tensors can be found, but in general only one
tensor fits both the high and low frequency branches. Thus, in

principle the Schonland ambiguity for A
$

tensors from ENDOR
experiments does not exist. However, in practice tensors very
often are obtained by fitting transitions within only one of the
MS multiplets, the other not being measured or difficult to ana-
lyse because of overlap with other lines, and an ambiguity in the
fitting result may exist. We have shown how to calculate the
other best-fit tensor, which we call Schonland conjugate, for a

given best-fit A
$

tensor determined from ENDOR experiments.
The result depends on various details of the experiment:

(1) whether the high or low frequency branches were fitted;
(2) the magnetic field/microwave frequency;
(3) the rotation planes in which the data were gathered and also

the choice of reference frame.
The results in this paper should encourage ENDOR spectrosco-
pists to measure and analyse ENDOR data in both MS multiplets,
or, when this is not possible or conclusive (see limiting cases), to
complement their measurements by experiments in a fourth plane
or at another microwave frequency (less discriminating). The paper
should enable computational researchers to recognize experimen-
tal circumstances which lead to the Schonland ambiguity and pro-
vide the means for calculating the other best-fitting tensors where
these have not been considered in literature, without aid of simu-
lation and or fitting tools.
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